Virus With Potential to Fight Cancer | Scientific Discoveries and Advancements | Forum

A A A
Avatar

Please consider registering
guest

sp_LogInOut Log In sp_Registration Register

Register | Lost password?
Advanced Search

— Forum Scope —






— Match —





— Forum Options —





Minimum search word length is 3 characters - maximum search word length is 84 characters

sp_Feed Topic RSS sp_TopicIcon
Virus With Potential to Fight Cancer
February 12, 2010
7:09 am
Avatar
sandra
Member
Members
Forum Posts: 3858
Member Since:
December 4, 2009
sp_UserOfflineSmall Offline

3-D Structure of Bullet-Shaped Virus With Potential to Fight Cancer, HIV Revealed
"ScienceDaily (Feb. 11, 2010) — Vesicular stomatitis virus, or VSV, has long been a model system for studying and understanding the life cycle of negative-strand RNA viruses, which include viruses that cause influenza, measles and rabies.

More importantly, research has shown that VSV has the potential to be genetically modified to serve as an anti-cancer agent, exercising high selectivity in killing cancer cells while sparing healthy cells, and as a potent vaccine against HIV.

For such modifications to occur, however, scientists must have an accurate picture of the virus's structure. While three-dimensional structural information of VSV's characteristic bullet shape and its assembly process has been sought for decades, efforts have been hampered by technological and methodological limitations.

Now, researchers at UCLA's California NanoSystems Institute and the UCLA Department of Microbiology, Immunology and Molecular Genetics and colleagues have not only revealed the 3-D structure of the trunk section of VSV but have further deduced the architectural organization of the entire bullet-shaped virion through cryo-electron microscopy and an integrated use of image-processing methods.

Their research findings appear this month in the journal Science.

"Structures of individual rhabdovirus proteins have been reported in Science and other high-profile journals, but until now, how they are organized into a bullet shape has remained unclear," said study author Z. Hong Zhou, UCLA professor of microbiology, immunology and molecular genetics and a member of the CNSI. "The special shape of VSV-- a bullet head with a short, helical trunk-- has lent to its evasion from three-dimensional structural studies."

Based on their research into the structure of VSV, the team proposed a model for the assembly of the virus, with its origin at the bullet tip. Their data suggest that VSV assembles through the alternating use of several possible interaction interfaces coded in viral protein sequences to wind its protein and RNA chain into the characteristic bullet shape.

"Our structure provides the first direct visualization of the N and M proteins inside the VSV virion at 10.6-Å resolution. Surprisingly, our data clearly demonstrated that VSV is a highly ordered particle, with the nucleocapsid surrounded by, instead of surrounding, a matrix of M proteins," said lead study author Peng Ge, a visiting graduate student at UCLA from Baylor College of Medicine. "To our amusement, the sequence in assembling viral protein and RNA molecules into the virus appears to rhyme with the first several measures of Mozart's piano sonata in C-Major, K.545." (This musical correlation is illustrated in the paper's supplementary movie 2.)

The findings could help lead to advances in the development of VSV-based vaccines for HIV and other deadly viruses, according to the researchers.

"Our structure provides some of the first clues for understanding VSV-derived vaccine pseudotypes and for optimizing therapeutic VSV variants," Zhou said. "This work moves our understanding of the biology of this large and medically important class of viruses ahead in a dramatic way. The next stage of research for our team will be to reveal the details of molecular interactions at the atomic scale using advanced imaging instruments now available at CNSI."

The Electron Imaging Center for Nanomachines (EICN) lab at the CNSI has Cryo-EM instrumentation, including the Titan Krios microscope, which makes atomically precise 3-D computer reconstructions of biological samples and produces the highest-resolution images available of viruses, which may lead to better vaccines and new treatments for disease.

In addition to Z. Hong Zhou and Peng Ge, the research team included colleagues from the laboratory of Ming Luo, professor of microbiology at the University of Alabama at Birmingham, and Stan Schein, UCLA professor of psychology.

The research was supported by the National Institutes of Health."

http://www.sciencedaily.com/re.....111757.htm

“Living backwards!” Alice repeated in great
astonishment. “I never heard of such a thing!”
“—but there’s one great advantage in it, that one’s
memory works both ways.”
— Lewis Carroll, Through the Looking-Glass

Forum Timezone: America/Los_Angeles

Most Users Ever Online: 288

Currently Online:
42 Guest(s)

Currently Browsing this Page:
1 Guest(s)

Top Posters:

greeney2: 10297

bionic: 9870

Lashmar: 5289

tigger: 4576

rath: 4297

DIss0n80r: 4161

sandra: 3858

frrostedman: 3815

Wing-Zero: 3278

Tairaa: 2842

Member Stats:

Guest Posters: 2

Members: 24781

Moderators: 0

Admins: 2

Forum Stats:

Groups: 8

Forums: 31

Topics: 9083

Posts: 124338

Newest Members:

YLGDTH, BillyShouse, Hicks Lane, muduzi, godlove, lenafan234, omep80, exam online, Patrick Shaw, JaSuRiAiLa

Administrators: John Greenewald: 637, blackvault: 1776