By Rebekah Marcarelli

Researchers have confirmed the existence of exotic hadrons, which are a type of matter that could not be confirmed through the common quark model.

"We've confirmed the unambiguous observation of a very exotic state-something that looks like a particle composed of two quarks and two anti-quarks," Tomasz Skwarnicki, a professor and specialist in experimental high-energy physics, said in a Syracuse University news release. "The discovery certainly doesn't fit the traditional quark model. It may give us a new way of looking at strong-interaction physics."

Quarks are "hard, point-like objects found within the nucleus of an atom," the news release reported. When three quarks band together they form compound particles called baryons; a commonly-known baryon is a proton.

When these particles interact with anti-particles that have the same mass but an opposite charge, called anti-quarks, they make up mesons. These typed of compounds can be found when heavy man-made particles such as those found in nuclear reactors decay.

In 2007 a research team known as the Belle Collaboration discovered an exotic particle, dubbed Z(4430), which seems to contain two quarks and two anti-quarks.

"Some experts argued that Belle's initial analysis was naïve and prone to arrive at an unjustified conclusion," Skwarnick said. "As a result, many physicists concluded that there was no good evidence to prove this particle was real."

As second research team called BaBar conducted an analysis the called Z(4430)'s existence even more into question.

"BaBar didn't prove that Belle's measurements and data interpretations were wrong," Skwarnicki said. "They just felt that, based on their data, there was no need to postulate existence of this particle."

Belle conducted an even more thorough analysis of the data set and found "statistically significant" evidence of the particle's existence.

"We analyzed tens of thousands of meson decays, selected from trillions of collisions in the Large Hadron Collider [the world's largest, most powerful particle accelerator] at CERN. Because the data sample was so large, it forced us to use statistically powerful analysis that could, in turn, measure properties in an unambiguous manner. It's great to finally prove the existence of something that we had long thought was out there," Professor Sheldon Stone. of the European Organization for Nuclear Research (CERN), said in the news release.

"Each experiment--Belle, BaBar, and LHCb--analyzed its own data. Although it pertained to the same process, the data was collected at different times, with different colliders, and with different apparatuses for capturing outgoing particles. Our findings are unique to our experiment," Skwarnicki said.

Source and special thanks: HNGN 

Other Popular Articles
Order by: 
Per page: 
  • There are no comments yet
The Social Network Buzz - Comment using your Facebook, AOL, Hotmail or Yahoo! account
The Black Vault Owner/Operator
04.14.2014 (129 days ago)
0 Subscribers
All News by Administrator
Share This Article
0 votes
Related News
CDC announced today that approximately 75 Atlanta-based staff are being monitored or provided antibiotics because they may have been unintentionally exposed to anthrax
62 days ago · From Administrator
Excitement is building for fans across the globe with today’s first match of the Fédération Internationale de Football Association (FIFA) 2014 World Cup tournament.
69 days ago · From Administrator
A programme that convinced humans that it was a 13-year-old boy has become the first computer ever to pass the Turing Test.
73 days ago · From Administrator
"Hello, World!" came the message from the International Space Station as NASA successfully beamed high-definition video via laser from space to ground.
Main Space
76 days ago · From Administrator
DARPA’s Z-Man program has demonstrated the first known human climbing of a glass wall using climbing devices inspired by geckos.
76 days ago · From Administrator
Very Exotic Matter Confirmed By Large Hadron Collider