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TOP SECRET-LHERA"

Solving xa = ‘b (mod ¢) for x and Undecimating Recursions

| e S TTTUUB) (3)-P.L. 86-36

- (U) There are many times when the ability to undo the effects of decimation on a linear
recursive sequence would be of gréeat vaiue to the analyst. This is a thorough ook ai the
problem of undecimating, with historical notes and several examples of important
calculational techniques. While undecimating can now be done with software, this rather
complete tutorial offers a worthwhile historical perspective of the prbcess.

INTRODUCTION

(U) The ring of integers module ¢ has long been 2 most lucrative area for
mathematical recreations. On occasion, these mathematical diversions can actually be
useful in cryptanalysis and signals analysis, like the solution of xa = b (mod ¢) described
here. The approach will be to first describe the general problem of solving xa = b (mod ¢}
for x. Then thig will be extended to the special case where b=1 and ¢=2n- 1 for some
integer n (that is, ¢ is the cycle length of a primitive recursion of degree n), making the
process very near Lo undoing a deécimation of a primitive linear recursive sequence.

- it

. £86FOnce ui)on a time, the degrees of polynomials used in communications-equipment
were of such low degree that decimating and undecimating the polynomials were
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easily dene with a glance at [Pé't;rson‘s) table (1,2]. However, modern equipment
rarely uses degree 4 and 5 recursions, with the degres of even randomizers often in the 20s.

<Pecy

SOLVING XA = B(MODC)FORX

(U) At the risk of presenting this algorithm less than optimally, I will build it from
scratch . . . that is, from the point where one first scratches one's head and ponders it. The
first question to ask is, “Does it even have a solution?” And a good question it is, too, for
one is not always guaranteed an x that will solve xa = b (mod ¢). For example, it is easily
seen that x*2 = 3 (mod 4) eannot be solved. Begging the reader’s pardon, | will expand
this simplistic example to show fully that there is no possible x that works. In fact, the
integers modulo 4 contain only four possible replacements for x. These are 0, 1, 2, and 3.
Now, ' )

0*2 = 0{mod 4),

1*2 = 2 (mod 4), |

2¢2 = 4 = 0 (mod 4),
and 3*2 = 6 = 2 (mod 4).

{U) Of course, the classical result is that a solution to the equation xa = b (mod ¢) is
guaranteed as long as (a,c) divides (b,c), where (,) is the standard notation for the greatest
common divisor function. That is, if (a,c) = 1, an x that solves xa = b (mod ¢) is
guaranteed. If (a,c) > 1, a selition will exist only when this factor can be divided out of all
three terms a, b, and ¢; thus the solution is the guaranteed x’ that solves x'*a’ = b’ (mmod ¢).

(U) The first method one comes to is what [ call the hard way. That is, exhaustively
test all positive integers 1,2, . . ., e-1 until getting one that works. That is essentially
what took place in the earlier example where all four integers mod 4 were checked to show
there was no x that sclved x*2 = 3 (mod 4). Seriously, though, zero need never be checked,
s0 the worst case for the exhaustive method is ¢-1 multiplications to perform, This is fine
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for c=4, but I wouldn't care to try this method for x*11 = 19 (mod 281) or (worse) x*701 =
44 (mod 1993). So there must be a better way, and there is.

(U} The second method is a clever way of approaching this exhaustion problem. It
really isn't worthwhile to check every poss.ible'int.eger as x. Only certain ones have a
chance, and one way to write the form of those that might work is k[c/a]+n where [ ]
denotes the greatest integer function, k = 1, 2, ..., a-1 and n=[b/a] + 1 initially with some
modification necessary as k increases. This modification to n will become clear in the
example ‘and the next method, but the importance of this method is that it reduces an
exhaustion over ¢-1 integers to an exhaustion over a-1 integers. [ stlll wouldn’ t be happy

with this for solving x*701 = 44 (mod 1993), but it is worthwhile doing an example for,
say, x*11 = 19 (mod 281).

[/a)- = [281/11] = 25
[b/al+1 = [19/11]+1 = 1+1 =2
correct interval: (11-21)
k=1,n=2: klc/al+n= 25+_2= 27,27*11= 297= 16 (mod 281)
k=2,n=2 klc/al+n= 50+2= 52,52*11= 572= 10 (mod 281)

n=3: adjustnto 3 53,53*11= 583= 21 (mod 281)
k=3,n=3: kic/a}+n=75+3= 78, 78*11= 858= 15 (mod 281)
k=4,n=3: kic/al+n=100+3=103, 103*11=1133= 9 (mod 281)

n=4: adjustnto4 104,104*11=1144= 20 (mod 281) ‘
K=5n=4 Kklc/al+n=125+4=129,120*11=1419= 14 (mod 281)
k=6,n=4: k{c/a]+n=150+4=154,154*11=1634= 8(mod 281)
" n=5: adjustntob 165, 15511 =1706= 19 (mod 281)

80 X = 155
_ and 155%11 = 1705 = 19 + (6*281) = 19 (mod 281)

(U) This example shows the real reason for the form of the numbers to be tried. With
the greatest integer of ¢/a, one picks up the number of full multiples of “a” needed to get to
“¢.” The “+1” termof n moves past ¢ and the {b/a] moves the appropriate number of full
multiples of “a” beyond this to get. to the correct interval to have a chance. The
aﬂjustments to n must be made whenever the tested number drifts out of this correct
interval.

(U) The third method is related to the second method, but is an even more clever way
of doing it. Instead of exhausting the possible x 's of the form k[c/a)+n, only the first two
need to be done and the dlﬂ'erence will point to the correct’ solutmn through (mod a)
arlthmet.lc Say
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([c/a]+n)*a =dy + ¢

and (2*[¢/a)+n)*a = dg + 2¢,
then d = dg - d, is the differerice (note: because of the greatest integer function, -a <d <0).
The set of numbers (mod &) generated by d; + kd, with n incremented and a added each
time the sum goes negative, is checked until one of these numbers is di, = b (mod a). The
even more cle\rer part of the algorithm is that it has turned the multlphcatwe problem
(mod ¢) into an additive problem (mod a). It also has the possibility of being apphed
recursively [e.g., in d; + kd = di (mod a) the right k is the x’ that solves the equation x"*(-
d) = (d;-dy) (mod a)l. It is not worthwhile to pursue this recursive definition’at present
because there are still better ways, but the same example, x*11 = 19 (mod 281) is
beneficial. ' S '

{c/a) = (281/111 = 25

bfal+1=[19111+1 =141 =2

k=1,n=2kic/al-+n= 25+ 2= 27, 27*11= 207= 16 + 281’
k=2, n=2: k[c/a)+n= 50+ 2= 52, 52*11= 572 10+ (2*281)

[dp=19=8(mod 11)} d=10- 16—-6
dy=16=5(mod1l) k=1/n=2

d + d=-1=10(mod11) k=2,n=3

dy +2d=4(mod11} =~ k=3,n=3

d; +3d=-2=9(mod11) = k=4,n=4.

dy + 4d = 3(mod 11) "k=5,n=4 '
dy +5d =-3=8(mod11})* ~  k=6,n=5%

for k=8, n=5, x=kle/a]+ n=(6*25)+5=155
and 155*11 = 1705 = 19 + (6*281) = 19 (mod 281) -

(U) The third method is well on the way to becoming the classical solution, the
Euclidean Algorithm. Through the hinted recursive possibility, the repetitive divisions in
the Euclidean Algorithm are simulated. Given two numbers (a and ¢ in this case), the
Euclidean Algorithm finds integers s and t such that sa + tc =:1. Thus; bs {mod c¢)isa
solution to xa = b (mod ¢). : - :

© (U} Since the s is the only important integer to be found for this application (WOrking
mod c¢), the following slight modification of the Extended Euclidean Algorithm can'be used
here. The meotivation for this particular. form is that it is tailored to the case of
‘undecimating recursions, so it is used here despite the slightly nonstandard form. This
form of the Euclidean Algorithm specifically gives the multiplicative inverse for.a, mod ¢.
In the equation xa = b (mod ¢), a will always be less than ¢, so let Ry = c and R) = a {the
general condition isthat Rg > R; > 1). 83 = 0and8; = 1. Fori= 1,2,3, ... (as needed)
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Qi +1 = [R;.)/R;], the greatest integer in this quotient, -
Ri+1 = Ri1-(Qi+1*Ry), the remainder of the quotient,
Si+1 = Si1-(Qi+1*S)).

If R.H = 0, Rg and R, are, not relatwely prime (no i inverse exlst.s and R, is the greatest
common d1v1sor) '

IfR;41 =1, then Siy1is t.he multlphcatwe -inverse of R1 o A
[note: ifS;41 < 0, s,+,+Roalsoworksl '

IfRi+1 > 1, another stepis needed e T
[comment: at any step, S,... 1*'Ri=Ri4 1 (mod Ro)]

Examples: | ' . .
x*11'= 19 (mod 281) . . ©© x*701 = 44 (mod 1993).
@ ® 5 " Q@ R s
i=0 .- 281 o .. . . . 1983 . 0
i=1t - 1 1 S )| 1
i=2 25 6 25 | 2. 691 .2
i=3 1 - 5 26 1 110 3
i=4 1 1 B 5 & a7
+281 . i=5 2 28 37
230 - i=6 1 13 -54
check: ST i=7 2 2 145 .
230%11=2530= 1+(9"281) © .t i=8 6 1 -924
" 19%230=4370=165+(15°281) S 11993
.. sox=156  check: . 1089
" and 155*11=1705= 19+(5‘281)  1069°701=749369= 1+ (376°1993)
44%1069=47036 = 1197+ (23*1993)
sox=1197 '

" - and 1197%701 = 839097 =44 + (421 "1993)

w Wnth this algorithm, solvmg xa=b (mod ¢) is fairly straightforward. It is time to
move on to the specml case where b= 1and ¢= 20-1 for some mteger n.
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UNDOING DECIMATIONS -

(U) A decimated primitive linear recursive sequence can be undecimated by further
decimating by the multiplicative inverse (mod the cycle length) of the initial decimation.
That is, the effect of the two decimations is a decimation by 1 (the.end decimation is a
product of the multiplicative inverses). This requires that the initial decimation has a
multiplicative inverse, or the decimation cannot be undone uniquely. When 20-1 is not a
prime, the integers modulo 20-1 is not a field, only a ring - which means there are
elements that do not have multiplicative inverses. Notably, these are the elements that
are not relatively prime to 2r-1. In terms of decimations, decimating by one of these
amounts shortens the cycle length, and this can not be uniquely backed up. For example,

_the seventh decimation of a bit stream satisfying (0,1,6) with cycle length 63=7*3 is a 9-
long cycle satisfying (0,3,6), an imprimitive irreducible. However, starting with a_bit
stream satisfying (0,3,6) and decimating by 7 also gives a 9-long cycle satisfying (0,3,6). So
the decimation by 7 in this case cannot be uniquely undone. Additionally, there is no way
to generate all 63 bits of the primitive’s cycle from the 9 bits remaining in the decimated
stream if the former is the cage. : .

(U) Furthermore, if the Tth decimation of something yields (0,1,6) with cycle length
63, then the something must have a cycle length of at least 63*7 = 441 if it is recursive. In
fact, {0,7,42) is a factor of a recursive something whose Tth decimation is (0,1,6) (but
(0,7,42) may not be irreducible, so factoring programs may not show it this obviously).
Again, there is no uniqie answer for undoing the the decimation. In particular, the
something is not a primitive degree 6 recursion, since the Tth decimation of one of those no
'longer has cycle length 63. These examples illustrate the difficulties in undecimating by

a” only when “a” and 2n-1 are not relatively prime.

(U) An answer is guaranteed only when the recursion is primitive and the width (or
decimation) does not have a common factor with the cycle length (2degree.1} It ig still
possible to undo decimations frequently for polynomials that are not primitives by
treating the recursion as a product of irreducibles. This will be discussed further after the
primitives case, so in the following discussion, all recursions are assumed to be primitive
and (a,2degree.1) = 1.

56>~ The hard way described earlier still works, but is not worth considering,
especially since cycle lengths of primitive polynomials get large very quickly as the degree
increases. It doesn’t take too large.a degree before even the best computers are stifled by
the hard way. The equivalent of a clever way and an even more clever way were the quick
and easy methods offered in successive iterations of a short course on polynomials [3] that
taught a few years ago| | For ease of
programming and speed (additions are quicker than the divisions of t.he Euclidean
Algorithm), this was still the method I chose for the software to undo demmatmns For the
case of undecimating recursions, b=1 and the starting n=1 always The following
examples are worthwhile in showing this method: ‘

(b)
{b) (3)-18 USC 798
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(0,2,3,7,11) is found - (0,7,10) is found down

on width 5 (is the 5th columns on width 40.
decimation of something)
solve: x*5 = 1 (mod 2047) l_ . solve: x*40.= 1 (mod 1023)

[c/a] =[2047/5]= 409 {c/al={1023/40) =25

n=1 ' n=1
410%5=2050=13 + 2047 . 26°40=1040=17+ 1023
819*5=4095=1+2*2047 51*40=2040=-6 +2*1023
' _ d=-23
 Sox=819 S k=1,n=117

Decimate (0,2,3,7,1) by k=2, n=117-23=-6=34 (mod 40)

B19tofindthebase - k=3,n=23423=11

recursion whose 5th " " k=4,n=2 il-23=-12=28
decimationis (0,2,3,7,11) “k=5,n=328-23=5 .

| thisis: 0211 . k=6,n=3523=-18=22. .

k=17,n=422-23=-1(=39)
a "trick”: since k=7, n=4 gives (1+25) +4=179
_.and179*40 = -1 (mod 1023)
t (-179)*40 must be 1 (mod 1023)
(-179) = 844 (mod 1023)
check 844*40=33760=1+ (33-1023)
So decimating (0 '7 ,10) by 844 gives the base
.recurgion whose 40th decimation is (0,7,10).- . ..
T this is: 03,179,100

(U) The classlcal solutmn the Euchdean Algonthm put forward in (4], could also be
used to solve these problems. However, in practical applications the "a” is going to be
small enough that perhaps the Euclidean Algorithm isn't any better. Especially when one
considers using necklaces (residue classes formed by powers of 2) to get the smallest
related entry, the even more clever way is often the quickest, most efficient method. For
the second example above, the width 40 could have been replaced by § (5, 10, 20, 40, .. . are
always on the same. necklace), and a maximum of 5 additions is hard to beat. That
example is reworked here with the even more clever way using a=>5 and the Euclidean.
Algorithm for comparison, .

77 o - FOP-SECRETUMBRE
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solve: x*5 = 1 (mod 1023) x*40 = 1 (mod 1023)
lc/al=[1023/51=204 "~ Q R s
n=1 - - 1023 - 0
| 205*5=1025=2+1023 IR 40 N
409*5=2045=-1+2*1023 25 23' 25
brick: (-409)*5 = 1 (mod1023) 1 17 28
and (-409) = 614 (mod 1023) 1 8 51
check: : 2 5 .128
614*5=3070=1+(3*1023) 1 1 a7

(-179)-=844 (mod 1023)

Decimate (0,7,10) by either 614 or 844 (both work the same) to get the recursion whose
40th decimation is (0 7,10). . s o Cb) 4

thisis: (0,3,7,9,10)

(U) Another possibility for undecimating small degree polynomials is
(Peterson’s) table. This method wasn’t available for the xa=b {mod ¢) case because it is
unique to polynomials. These tables list (as minimally as possible} all irreducible
polynomials and a root of that polynomial. This is getting into some more advanced
mathematics, but for the present purposes I will descnbe only what is needed to
understand the undecimating process.

1{8)) Since.t.l'ie"powers of the roots of degree n irreducible polynomials fall into the
residue classes mentioned above, and these are equivalent to decimations, the first entries
of the table for degree 11 <

1 4005E  34445E 54215E 7 4055E 96015C

show that 0,2,3,7,11 (4215) is the 5th decimation of 0,2,11 (4005). A diversion to descnbe '

the elements of the table and how to use them is beneficial before going on to the second
example: The letter in the entry tells anumber of things about the roots of the polynomial,
the most important being that E, F, G, or H mean the polynomial is primitive. For further
description of these letters, I refer the interested reader to Appendix C of [2Z]. The
polynomials are entered in octal characters: '

0=000 1=001 2=010 3=011 4=_100 . 6=101 . 6=‘1_1|§) T=111.
Substituting these 3-bit values for the octal characters gives the bitmap of the polynomial

taps; for example, 4005 becomes 100000000101 in bits and the 1s appear in positions 0; 2,
11 when counting from {-up, right to left. It doesn’t actiially make much difference which

direction one counts, since each entry in the table represents both a polynomial and its

reverse (the polynomial with bitmap read the other direction). The integer in front of the
polynomial tells a raot of the polynomial based on w! being a root of the base recursion
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4005. Thus w3 is a root of 4445 or equivalently 4445 isthe 3rd decimation of 4005, w6 is a
root of 4215 or 4215 is the 5th decimation of 4005, and s0 on. Once one root (or decimation)
is known, they all are because of the necklaces described earlier For example.

W, w2, wd, w, wi6, wsz wsa wi28, w256, w512 and w1024

are the eleven roots of 4005 This is wntten in shorthand by only recording t.he  power, and
can easily be recognized as the fact that demmatmg a primitive Irs by a power of 2 gives
the.same polynomial. It is also noteworthy that w2048 is also a root, but 2048 = 1 (mod 211.
1)-and it was already listed (the 2048th deciniation of a 2047-long cycle is'a decimatior by
1). Some necklaces are

1 4005:1,2,4,8,16,32,64,128,256,512,1024 = .. " ‘
3 4445:3,6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072 =1025 '
5 4215:5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560 =513, 1026.

The necklace of the reverse polynomial con51sts of complements (mod 2047, 1n thls  tase) to
-the entries on the necklace for the polynomml ‘Hence

1R 5001 2048, 2045 2043 2039, 2031, 2015, 1983 1919, 1891 1535 1023
3R 5111 2044, 2041 2035, 2023 1999, 1951 1855 1663 1279 511 +1022. .

(U) This method is painless when the desired undecimation is actually the first listed
polynomial in the table, and it is possible otherwise. The.equation x*a = 1 (mod 2degree.])
must be solved when the first polynomial in the table is not involved. The w1dth 40
example (above) illustrates this.. i : .

- Find the polynomial whose 40th decimation is (0,7,10)
(0,7, 10) is the reverse of entry linthe deg‘ree 10 '
: port.mn of Peterson stable: 1 2011 E_ C
sosolve: x*40 =1 (mod 1023). |
this has been done in the prevmus examples,
. T x= -179 (reverse hasx = 1'79) .
so.if there is a 179 entry in Peterson 8: t.able
(dnd there is), it is'_thq base recursio'rf' ' o _ » N
19 3211G . e el e
So the 40th decimation of (0,3,7,9,10) gives {0, 7 10).

(n This was too easy, mostly because (0,7,10) is the first entry and all numbers were
in Peterson’s table without having to go through necklaces. - A tougher example is
beneficial. In fact, this example will have an imprimitive whose cycle is shortened by the
proper amount from the deciriation {hence'there will be two possible gnsiv'er'é)g '

v ' "'
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The polynomial (0,1,2,3,5,6,7,8,11) is found|

W)

{U) One significant note on the necklace is that only the smallest entry from a
necklace or its complement is listed. Unfortunately, the examples here never required
using the complementary necklace, but the smallest element on the complementary
necklace i3 easily found by (2degree-1) minus the largest entry on the necklace

(8]
r_-—- F’éterson’s table seems to be much more widely available and it 18"
exhaustive to degree 16 with selected polynomials listed up to degree 34. This limitation
(based mostly on the space required to list all the irreducible polynomials as degree rises)
makes this a hand calculation method only. It is not general enough to be much more than

a fun exercise for mathematicians. ' f

]| Jis that it can undo the decimations I,lfhat
shorten cycles length (like the more difficult example above), although it gives a primitive
and an imprimitive possibility to this problem that has no unique solution. In practical
'applications, a primitive polynomial is the most likely chndidate for the base recursin. So

—

WHEN THE POLYNOMIAL i8S NOT PRIMITIVE

(U) The previous arguments work for primitives and some impri‘q;itive ig"regl‘i;xdibles.
but the methods canbe extended to reducible polynomials naturally. For reducibles, the

' ) (1) '
TOP-SEEREFHMBRA- 80 (b} (3) =18 TIC 798
. {b) (3)-P.L. 86-36



SOLVING XA = BIMODC)FORX TOPIECRET-UMBRA

polynomial must be broken into its irreducible factors. Each of the factors must be
undecimated, and the product of these undecimations is the base polynomial whose given
decimation is thé original reducible polynomial. As a final example, what is the
polynomial whose 100th decimation is (0,2,19)? '

First, factor (0 2,19);
(0219) (0,1, 2)‘(01 24567)*(0678 10)
- Then undec:mate each factor by 100.
or better, by 25

[regardless of degree, 25, 50 and 100 are on the same neck]ace, in fact, 25 is already bigger
than the cycle length of (0,1,2)] -

the 25th decimation of (0,1,2) is (0,1,2)
the 25th decimation.of (0,6,11s(0,1,2,4,5,6,7)

the 25th decimation of (0,2,3,5,7,9,10) is (0,6,7,8,10)
(0,1,13,14,15,18,19) = (0,1,2)* (0,6,7) * (0,2,3,5,7,9,10)

So the 25th decimation of (0,1,13,14,15,18,19) is (0,2,19). This method of undecimating
reducibles gives a unique solution only when all factors have a unique solution.

CONCLUSION

{U)Y Many polynomials, primitive, imprimftive or reducible, can be undecimated. For
primitives, any of the ‘methods discussed works, and these cannot be undecimated only.
when the decimation a and the cycle length 2degree-1 have a common factor. For
imprimitives, if (a, 2degree-1) =1 anything still works, if (a,cycle length) =1 a method like
the Peterson’s table examples (perhaps having to extend it for degree) is required and two
solutions are possible. Again there is no undecimation if (a,cycle length) > 1. For
reducibles, the polynomial must be broken inte its irreducible factors. Each of the factors
must be undecimated, and the product of these uridecimations is the base polynomial
whose given decimation is the original reducible polynomial. Each time an irreducible
factor has two solutions, both: generate possible selutions. Any time a factor cannot be
uniquely undecimated [(a,cycle tength) > 1], the product cannot be uniquely backed up.

(U) There are always additional solutions of much higher degree (just interleave
several different recuréions), but the basic assumption here is that a simple recursion was
decimated. And that very practical problem in both cryptanalysis and signals analysis is
easily solved with the methods described here. Thankfully, there is software available -
that does most g_f the calculations presented here.
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